Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 19, 2014
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Spinning atoms with light: a new twist on atom optics

William Phillips
National Institute of Standards and Technology

Physicists have used light and its polarization to elucidate the internal state of atoms since the 19th century. Early in the 20th century, the momentum of light was used to manipulate the center-of-mass motion of atoms. The latter part of the 20th century brought optical pumping, coherent laser excitation, and laser cooling and trapping as tools to affect both the internal and external states of atoms. Bose-Einstein condensation created atomic samples having laser-like deBroglie-wave coherence, and atom optics techniques like Bragg diffraction provided coherent mirrors and beamsplitters for the coherent atoms. An extension of Bragg diffraction, using light beams with orbital angular momentum (angular momentum associated not with the optical polarization, but with the shape of the spatial mode), provided a new tool for coherent manipulation of atomic motion, creating coherent rotation of atom clouds, and persistent flow of superfluid atoms in toroidal traps. In the latest experiments, we have introduced an optical weak-link into the superfluid flow, allowing us to explore the behavior of an atomtronics circuit with an interesting circuit element.

Host: Bob Ecke