Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, February 04, 2014
11:00 AM - 11:30 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Generalizations of the Ginzburg-Landau Functional for Graph-Based Multiclass Data Classification

Cristina Garcia-Cardona
Claremont Graduate University

We present two graph-based algorithms for classification of high-dimensional data. The algorithms generalize a binary diffuse interface model to the case of multiple classes. Motivated by total variation techniques, the algorithms involve minimizing the Ginzburg-Landau (GL) energy functional adapted to a semi-supervised graph setup. We develop two multiclass generalizations, one based on a scalar representation and other based on a vector-field representation. We compare the performance of the two multiclass formulations in synthetic data as well as real benchmark sets, and demonstrate that our experimental results are competitive with the state-of-the-art among other graph-based algorithms. The talk is based on joint work with Arjuna Flenner, Allon Percus, Ekaterina Merkurjev and Andrea Bertozzi.

Host: Marian Anghel, manghel@lanl.gov