Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, January 14, 2014
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

An octree-based solver for the incompressible Navier-Stokes equations with enhanced stability and low dissipation

Yuri Vassilevski
Institute of Numerical Mathematics Russian Academy of Sciences

We present a finite difference solver for the unsteady incompressible Navier-Stokes equations based on adaptive cartesian octree grids. The method extends a stable staggered grid finite difference scheme to the graded octree meshes. It is found that a straightforward extension is prone to produce spurious oscillatory velocity modes on the fine-to-coarse grids interfaces. A local linear low-pass filter is shown to reduce much of the bad influence of the interface modes on the accuracy of numerical solution. We introduce an implicit upwind finite difference approximation of advective terms as a low dissipative and stable alternative to semi-Lagrangian methods to treat the transport part of the equations. The performance of method is verified for a set of benchmark tests: a Beltrami type flow, the 3D lid-driven cavity and channel flows over a 3D cylinder.

This is the joint work with Kirill Terehov from INM RAS and Maxim Olshanskii from University of Houston and Moscow State University.

Host: Konstantin Lipnikov