Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, March 19, 2014
3:00 PM - 4:00 PM
MSL Auditorium (TA-3, Bldg.1698)

CMS Colloquium

Visualization of domain wall magnetism and domain magnetoelectric effect

Weida Wu
Rutgets University

Multiferroics are materials with coexisting magnetic and ferroelectric orders, where the cross-coupling between two ferroic orders can result in strong magnetoelectric effects [1-4]. Therefore, it is of both fundamental and technological interest to visualize cross-coupled magnetoelectric domains and domain walls in multiferroics. Recently, intriguing topological defects with six interlocked structural antiphase and ferroelectric domains merging into a vortex core were revealed in multiferroic hexagonal REMnO3 (RE=rare earths) [5, 6]. Many emergent phenomena, such as enhanced conduction and unusual piezoelectric response, were observed in charged ferroelectric domain walls protected by these topological defects [7, 8]. More interestingly, alternating uncompensated magnetic moments were discovered at coupled structural antiphase and ferroelectric domain walls in hexagonal manganites using cryogenic magnetic force microscopy (MFM) [9], which demonstrates the cross-coupling between ferroelectric and magnetic orders. Using a newly-developed Magnetoelectric Force Microscopy (MeFM), which combines MFM with in-situ modulating high electric fields, we directly visualize the magnetoelectric response of the multiferroic domains in hexagonal manganites, which opens up explorations of emergent phenomena in multifunctional materials with multiple coupled orders [10].

Reference
[1] N. A. Spaldin, and M. Fiebig, Science 309, 391 (2005).
[2] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[3] S. W. Cheong, and M. Mostovoy, Nat. Mater. 6, 13 (2007).
[4] N. A. Spaldin, S.-W. Cheong, and R. Ramesh, in Physics Today2010), pp. 38.
[5] T. Choi et al., Nature Materials 9, 253 (2010).
[6] T. Jungk et al., Appl. Phys. Lett. 97, 012904 (2010).
[7] E. B. Lochocki et al., Appl. Phys. Lett. 99, 232901 (2011).
[8] W. Wu et al., Phys. Rev. Lett. 108, 077203 (2012).
[9] Y. Geng et al., Nano Letters 12, 6055−6059 (2012).
[10] Y. Geng et al., Nat. Mater. 13, 163 (2014).

Host: Cristian Batista