Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Thursday, November 14, 2013
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Advances on an asymptotic parallel-in-time method for highly oscillatory PDEs

Terry Haut

In this talk, I will first review a recent time-stepping algorithm for nonlinear PDEs that exhibit fast (highly oscillatory) time scales. PDEs of this form arise in many applications of interest, and in particular describe the dynamics of the ocean and atmosphere. The scheme combines asymptotic techniques (which are inexpensive but can have insufficient accuracy) with parallel-in-time methods (which, alone, can yield minimal speedup for equations that exhibit rapid temporal oscillations). Examples are presented on the (1D) rotating shallow water equations in a periodic domain, which demonstrate significant parallel speedup is achievable.

In order to implement this time-stepping method for general spatial domains (in 2D and 3D), a key component involves applying the exponential of skew-Hermitian operators. To this end, I will next present a new algorithm for doing so. This method can also be used for solving wave propagation problems, which is of independent interest. This scheme has several advantages over standard methods, including the absence of any stability constraints in relation to the spatial discretization, and the ability to parallelize the computation in the time variable over as many characteristic wavelengths as resources permit (in addition to any spatial parallelization). I will also present examples on the linear 2D shallow water equations, as well the 2D (variable coefficient) wave equation. In these examples, this method (in serial) is 1-2 orders of magnitude faster than both RK4 and the use of Chebyshev polynomials.