Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Summer Research 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Thursday, August 29, 2013
12:30 PM - 2:00 PM
T-DO Conference Room (TA-3, Bldg 123, Rm 121)

Quantum Lunch

Quantum gases in micro-engineered environments near surfaces

Peter Kruger
The University of Nottingham

Integrating and miniaturizing atom cooling and trapping geometries can be used for efficient and versatile production of quantum degenerate gases in the vicinity of atom chips. This concept has been used successfully in forming a variety of microtraps based on static and oscillating magnetic and electric fields. Applications range from studies of many-body physics of interacting quantum gases confined in custom-engineered geometries to portable field sensors and accelerometers. Here we will give a few examples illustrating the versatility of atom chips. In particular, we will show how low-dimensional quantum gases can be manipulated in non-trivial geometries, such as double wells, rings and hollow tori. Beyond modifying the trapping potential, control of magnetic fields allows microscopic local and fast temporal tailoring of the interaction strength within the gas, opening the path to a new set of experiments. For example, inhomogeneous interaction strength results in inhomogeneous critical parameters for thermal and quantum phase transitions as well as in inhomogeneous velocity of sound. We will discuss how such inhomogeneities can potentially be used to study proximity effects and phonon production in a constant velocity gas flow undergoing the transition from subsonic to supersonic speed. The potential of atom chips can be greatly enhanced if the separation between atoms and surfaces is reduced beyond the current limit of typically at least a few microns. We will discuss the benefits of reaching the submicron range and the main obstacles, including trapping potential roughness, fluctuating currents and disruptive surface forces. We will report on experimental progress in tackling these challenges.

Host: Diego Dalvit