Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, July 15, 2013
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Analysis of FDTD methods for polydispersive media

Nathan Gibson

ABSTRACT: We describe polarization models for polydispersive media, such as biological tissue. One popular approach for representing the polarization is the Cole-Cole (1936) model, a heuristic generalization of the standard Debye (1929) model which itself corresponds to a first order linear auxiliary ODE. The Cole-Cole model corresponds to a fractional order ODE which presents computational challenges. We describe an alternative approach based on using the Debye model, but with a probability distribution of relaxation times. We introduce a novel numerical approach based on Polynomial Chaos Expansions. We then consider stability and dispersion analysis of staggered, finite difference time domain (FDTD) methods for Maxwell's equations in these polydispersive media. In particular, we present a proof of (conditional) stability using an energy decay property and derive a discrete dispersion relation in terms of a discrete expected complex permitivity. Lastly we describe the extension to high order accurate (in space) FDTD methods.