Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, March 06, 2013
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Model-Based Imaging

Charles A. Bouman
Purdue University

Over the last two decades, model-based imaging techniques have emerged as a principled framework for understanding and solving many of the most important problems in imaging research. The approach of model-based imaging is to construct a model of both the image and the imaging system, and then to use this integrated model to either reconstruct an unknown image, or to estimate unknown parameters. So for example, model-based image reconstruction and parameter estimation can be used to robustly form images from sensors with uncertain calibration. But in addition, model-based imaging can serve as a framework for optimizing the static and dynamic design of imaging sensor systems themselves. In this talk, we review some techniques and recent successes in model-based imaging. Two application domains that we consider are tomographic reconstruction from multislice helical-scan CT and electron microscopy, two very different sensors that share much in common when viewed from the perspective of model-based imaging. For both cases, we discuss a variety of technical innovations, which either improve image quality or reduce the computational burden. We then show results, which demonstrate the value of the methods both quantitatively and qualitatively, on a variety of real and simulated datasets. Finally, we conclude with a philosophical discussion of the future potential of model-based methods, and we present some emerging ideas in prior modeling of images, which have potential to substantially improve upon current results.