Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, February 07, 2013
12:30 PM - 2:00 PM
T-DO Conference Room (TA-3, Bldg 123)

Quantum Lunch

Classical simulation of entanglement swapping with bounded communication?

Richard Cleve
Institute for Quantum Computing, Waterloo, Canada

Determining what nonlocal behaviour can occur as a result of quantum entanglement is one of the most puzzling aspects of quantum information. Simple questions about this are not currently even known to be computationally decidable. One way of investigating this behaviour is in terms of the resources in classical information required to simulate it. It is known that the nonlocal correlations that can arise by measuring the individual qubits of a Bell state can be simulated by a classical two-party protocol where the parties, Alice and Bob, have shared randomness and are permitted to communicate with a finite number of bits. We consider a harder simulation task, where there is no shared randomness between Alice and Bob; rather, there is shared randomness between Alice and an intermediate party Carol, as well between Carol and Bob, and finite communication is permitted. Can the same nonlocal correlations between Alice and Bob be simulated in this scenario? We answer this question and explain how this simulation problem is related to the problem of simulating entanglement swapping. This is joint work with Cyril Branciard, Nicolas Brunner, Harry Buhrman, Nicolas Gisin, Samuel Portmann, Denis Rosset, and Mario Szegedy.

Host: Rolando Somma