Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 06, 2013
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Probabilistic Programming

Nils Bertschinger
Max Planck Institute

Nowadays, many problems of artificial intelligence are formulated as probabilistic inference. Even though, standard inference algorithms are available, a lot of hand-crafting is required to turn a probabilistic model into code. Probabilistic programming is a powerful tool to specify probabilistic models directly in terms of a computer program. This can either be achieved by designing a specialized programming language for expressing probabilistic models or extending the semantics of an existing language.

In this talk, I will shortly explain the semantics underlying a probabilistic computation and discuss the implementation of different inference algorithms. Finally, I will present my Clojure library for probabilistic programming and show some examples of Bayes nets and Gaussian mixture models expressed as probabilistic programs.

Host: David Wolpert