Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 06, 2012
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

A space-time smooth artificial viscosity method for nonlinear conservation laws: the C-method

Steve Shkoller
UC Davis

I will discuss a new methodology for adding localized, space-time smooth, artificial viscosity to nonlinear systems of conservation laws which propagate shock waves, contact discontinuities, and rarefaction waves.

To the system of conservation laws, we couple a linear scalar reaction-diffusion equation whose solution C is used as an artificial modification of the flux vector, which determines both the location, localization, and strength of the artificial viscosity. Near shock discontinuities, C is large and localized, but transitions smoothlyin space-time to zero away from discontinuities. In 1-D, this approach can be viewed as a carefully chosen space-time smoothing of the classical artificial viscosity method devised by VonNeumann and Richtmyer (1950), and is provably convergent in the limit of zero mesh size.

This relatively simple approach has two fundamental features: (1) the regularization is at the continuum level--i.e., the level of the partial differential equations (PDE)-- so that a variety of higher-order numerical discretization scheme can be employed, and (2) Riemann-based solvers and characteristic decompositions are not needed near strong shocks.

I will show numerical simulations of this methodology on a number of classical shock-tube problems, and describe how this methodology can be used in the multi-D setting. This is joint work with Jon Reisner and Jonny Serensca.

Host: Misha Shashkov