Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 31, 2012
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Spatiotemporal Measurements and Modeling of Genetic Expression

Doug Shepherd
MPA-CINT, CNLS

Single-‐molecule, single-‐cell studies of genetic expression have provided key insights into how cells respond to external stimuli [1-‐5]. By directly measuring copy numbers of individual biomolecules in cells, such as the number of individual messenger RNA transcripts, it is now possible to obtain statistical measures of the spatio-‐temporal distributions of key signaling and regulatory molecules. Such comprehensive datasets can be used to infer system-‐level models that yield quantitative insight into cellular regulation, predict cellular responses in new experimental conditions, and suggest more revealing experiments to uncover regulatory dynamics. The integration of single-‐molecule spectroscopy, biochemistry,and numerical modeling is a powerful multi-‐disciplinary approach to investigating cellular response at the genetic level. In this talk I will provide a walk-‐through of our single-‐molecule experiments, data analysis, and numerical modeling for one specific example, the Interleukin-‐1 alpha pathway [6]. I will specifically focus on how the large amount of information in these datasets allows one to probe what types of fluctuations are most informative about the underlying gene regulatory process. REFERENCES [1] Munsky, B., et al., Science, 336(6078), 183187 (2012). [2] Femino A.M., et al., Science, 280(5363), 585-‐590 (1998). [3] Choi H.M.T, et al, Nat Biotechnol, 28(11), 1208-‐1212(2010). [4] Raj A., et al., Nat Meth, 5(10), 877-‐879 (2008). [5] Katranidis A, et al., Angew Chem Int Edit 48(10), 1578-‐1761 (2009). [6] Shepherd D.P., et al, Proc. SPIE 8228, 8228-‐08 (2012).

Host: Kipton Barros, T-4 and CNLS