Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, May 16, 2012
1:00 PM - 2:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Molecules as quantum processors: Quantum process tomography as a tool for unraveling quantum coherent effects in photosynthesis.

Alan Aspuru-Guzik
Department of Chemistry and Chemical Biology, Harvard University

Observed long-lived coherences in various photosynthetic complexes a at cryogenic and room temperature have generated vigorous efforts both in theory and experiment to understand their origins and explore their potential role to biological function. The ultrafast signals resulting from the experiments that show evidence for these coherences result from many contributions to the monitored polarization. These experiments raise the following specific questions: What is the role of quantum coherence, if any, in the energy transfer process of these systems?, and second: Why is the coherence preserved for these long times? In this talk, I will describe our recent efforts to address these two questions using tools from physical chemistry and quantum information theory. We employ and develop several techniques ranging from quantum master equations to explicit atomistic simulations and introduce measures of efficiency, partitioning of contributions to quantum transport, and non-Markovianity in these systems. We propose a new set of ultrafast experments (quantum process tomography, QPT) to extract the model-independent dynamical information, at the level of the electronic density matrix, about the energy transfer process from combinations of several ultrafast experiments designed to invert this quantum process matrix. This allows us to answer the crucial question of “How much information is in two-dimensional spectra?” and to make the case that QPT is a relevant reformulation of the problem with the goal to maximize the extracted information about the system as a function of the number of experiments carried out. I will describe QPT experiments currently underway.

Host: Sergei Tretiak, T-1: PHYSICS AND CHEMISTRY OF MATERIALS, 667-8351