Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, March 12, 2012
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Locally regulated space-time point process models of population dynamics with their continuum approximations

Michael Raghib
T-5 and CNLS

The pervasive presence spatial and size structure in biological populations challenges fundamental assumptions at the heart of continuum models of population dynamics based on mean densities (local or global) only. Individual-based models (IBM's) were introduced over the last decade in an attempt to overcome this limitation by following explicitly each individual in the population. Although the IBM approach has been quite insightful, the capability to follow each individual usually comes at the expense of analytical tractability, which limits the generality of the statements that can be made. For the specific case of spatial structure in populations of sessile (and identical) organisms, space-time point processes with non uniform dispersal and a local regulation of the mortality rate seem to cover the middle ground between analytical tractability and a higher degree of biological realism. Continuum approximations of these stochastic processes distill their fundamental properties, but they often result in infinite hierarchies of moment equations. We use the principle of constrained maximum entropy to derive a closure relationship for one such hierarchy truncated at second order using normalization and the product densities of first and second orders as constraints. The resulting `maxent' closure is similar to the Kirkwood superposition approximation, but it is complemented with previously unknown correction terms that depend on on the area for which third order correlations are irreducible. This region also serves as a validation check, since it can only be found if the assumptions of the closure are met. Comparisons between simulations of the point process, alternative heuristic closures, and the maxent closure show significant improvements in the ability of the maxent closure to predict equilibrium values for mildly aggregated spatial patterns. Joint work with Nicholas A. Hill (Mathematics, Glasgow) and Ulf Dieckmann (Ecology and Evolution Program)

Host: Humberto C Godinez Vazquez, Mathematical Modeling and Analysis Theoretical Division, 5-9188