Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, July 23, 2012
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Computational Morphodynamics

Eric Mjolsness
University of California - Irvine, Department of Computer Science

"Morphodynamics", the local dynamics of form, studies the dynamics of causal processes that integrate geometry, mechanics, and local information processing to generate a functional physical object. Computational morphodynamics joins morphodynamic modeling with other computational tools such as microscope image analysis to solve problems, notably those arising in the study of biological development where geometry, biomechanics, and biomolecular information-processing are combined in flexible and intricate ways to generate a functional organism from a genetically encoded program. At the molecular level, both equilibrium and nonequilibrium statistical mechanics are needed for quantitative modeling. In this way computational morphodynamics aims to become central to the study of plant and animal development and also instructive to many other scientific and technological disciplines. To simulate such heterogeneous morphodynamic processes on a computer, in pursuit of improved predictive power and enhanced biological understanding, is much easier using powerful modeling software with a clear mathematical foundation. I propose that the mathematical and computational objects that are fundamentally involved follow a natural hierarchy of increasing size, from potentially stochastic dynamical systems on multisets and labeled graphs, to information-processing dynamics on infinite limits of graphs that include geometrical manifolds and nonmanifold geometries at several scales. Dynamics of and on such objects are naturally and generally expressed in terms of operator algebras. The result will be a modeling language and a geometry lively and rich enough to underlie the computational exploration of morphodynamics for biology and engineering.

Host: William Hlavacek, T-6, 665-1355