Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Thursday, August 25, 2011
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar


Giovanni Bellesia
T-6 and CNLS

Efficient enzyme degradation of crystalline cellulose to glucose is one of the main scientific roadblocks to the production of biofuels from lignocellulosic biomass. One way to greatly improve the enzyme degradation process of crystalline cellulose fibrils to glucose is to convert the naturally-occurring crystalline form of cellulose (cellulose I-beta) to a different crystalline form named cellulose III-I. The conversion process from crystalline cellulose I-beta to cellulose III relies on a chemical treatment based on anhydrous liquid ammonia. Recent experiments show that the enzymatic degradation rate increases 2-5 times in cellulose III respect to cellulose I-beta. A physical understanding of (1) how the main structural and thermodynamic differences between these two cellulose crystalline forms affect their different enzyme activity rates, and (2) how liquid ammonia interacts with crystalline cellulose could lead to the design of more efficient degradation protocols. I will present the results obtained in these directions using a multiresolution molecular dynamics simulation approach comprising a number of calculations on both water-solvated and ammonia-solvated cellulose I-beta and cellulose III-I fibrils.

Host: Peter Loxley,