Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, August 25, 2011
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

INTERACTION OF CRYSTALLINE CELLULOSE ALLOMORPHS WITH LIQUID AMMONIA

Giovanni Bellesia
T-6 and CNLS

Efficient enzyme degradation of crystalline cellulose to glucose is one of the main scientific roadblocks to the production of biofuels from lignocellulosic biomass. One way to greatly improve the enzyme degradation process of crystalline cellulose fibrils to glucose is to convert the naturally-occurring crystalline form of cellulose (cellulose I-beta) to a different crystalline form named cellulose III-I. The conversion process from crystalline cellulose I-beta to cellulose III relies on a chemical treatment based on anhydrous liquid ammonia. Recent experiments show that the enzymatic degradation rate increases 2-5 times in cellulose III respect to cellulose I-beta. A physical understanding of (1) how the main structural and thermodynamic differences between these two cellulose crystalline forms affect their different enzyme activity rates, and (2) how liquid ammonia interacts with crystalline cellulose could lead to the design of more efficient degradation protocols. I will present the results obtained in these directions using a multiresolution molecular dynamics simulation approach comprising a number of calculations on both water-solvated and ammonia-solvated cellulose I-beta and cellulose III-I fibrils.

Host: Peter Loxley, loxley@lanl.gov