Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 24, 2011
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Target Detection in Hyperspectral Imagery with Singular Covariance Matrices

Stanley R. Rotman
Ben-Gurion University of the Negev Beer-Sheva, ISRAEL

Accurate covariance matrix estimation for high dimensional data can be a difficult problem; nevertheless it is needed for good target acquisition performance in hyperspectral data. In this talk we will investigate two methods to give a sufficient approximation for the covariance matrix while only using a small number of neighboring pixels. The first is the QLRX (Quasilocal Covariance Matrix RX algorithm) that uses the eigenvectors of a global set of points, coming from a non-stationary distribution, but eigenvalues of the local neighborhood. The second method is the SMT (Sparce Matrix Transform) that performs a set of K Givens rotations to estimate the covariance matrix. We will compare results from target acquisition that are based on both of these methods. An improvement for the SMT algorithm is suggested.

Host: James Theiler, jt@lanl.gov, 665-5682