Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, July 12, 2011
10:30 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Solution Methodologies for Integrated Network Design and Scheduling Problems

Sarah Nurre

We discuss solution techniques for the new class of Integrated Network Design and Scheduling problems. Motivating applications for this problem class include infrastructure restoration after an extreme event and plug-in hybrid electric vehicle (PHEV) battery charging and discharging within a smart grid. Infrastructures, such as power grids and transportation systems, can be modeled as networks. Network managers must coordinate repairs or operational decisions using limited resources in order to maximize performance. Selecting which components to repair or utilize (i.e. downed power lines) can be viewed as network design decisions. Traditional network design decisions only focus on the end performance of the design, i.e., the network operation after all components are repaired. Clearly, in infrastructure restoration the success of the efforts depend on how well the services come back online. Therefore, it is important to allocate resources, such as work groups, to implement network design decisions. This resource allocation can be viewed as scheduling decisions. This novel model incorporating the combination of decisions occurring simultaneously does increase the problem difficulty, which motivates the need for both exact and approximate solution methods. I will present complexity results on the problem class under standard network performance metrics, exact and approximate solution methods, and case studies based on real-life data sets representing the infrastructure systems of lower Manhattan and New Hanover county, NC.

Host: Feng Pan