Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, August 04, 2011
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Stability and convergence for cell-centered Lagrangian schemes

B. Despres
Jacques-Louis Lions Laboratory

Lagrangian meshes are plagued with various pathologies (tangling, negative volume, ...), whatever the scheme used. In this second presentation I will focus on a priori stabilization of cell-centered Lagrangian schemes. It will be shown that pathologies of Lagrangian meshes can be analyzed with subzonal entropies which are kind of mixing entropies [1]. This subzonal entropy is added to the total entropy so that correction terms are designed to cell-centered Lagrangian schemes. The two main properties are: the scheme is still consistent in the mimetic sense, the mesh never crashes provided convenient time step is used. The low dissipativity Glace scheme takes huge advantage of this procedure. Test problems show the efficiency of the method.

Host: Mikhail Shashkov. shashkov@lanl.gov, 667-4400