Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 17, 2011
2:00 PM - 2:45 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

Achieving Capacity with Belief Propagation

Shrinivas Kudekar
T-4 and CNLS

Ever since Shannon's seminal paper on theory of communications in 1948, coding theory has strived to achieve the fundamental limits set by Shannon. Low-density Parity-check codes (LDPC) have shown tremendous promise for fast encoding and decoding of information. However, since their inception in 1963 by Robert Gallager, it is still not known if one can construct LDPC codes which approach the Shannon limit. In this talk I will briefly outline the channel coding problem and error correcting codes based on graphs and their associated low-complexity decoding algorithm. These codes can be found in virtually any new communication standard or product. These days they can even be found in hard disk drives, a product with extremely stringent requirements. A key focus of modern coding theory is to study the interplay between the graphical structure of a code and its decoding performance. I will focus on the particular structure which emerges when codes are "coupled". We call these "spatially coupled codes". I will demonstrate that these codes hold the promise of achieving simultaneous dreams of near Shannon limit performance, good finite-length performance, practical implementability and universality (same code to be used irrespective of the nature of noisy channel).

Host: Peter Loxley, loxley@lanl.gov