Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, February 24, 2011
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Geometric representations of linear codes

Pavel Rytir
Charles University, Prague

We say that a linear code C is triangular representable if there exists a two dimensional simplicial complex $\Delta$ such that C is a punctured code of the kernel of the incidence matrix of $\Delta$ and there is a bijection between C and $\ker \Delta$ which maps minimal codewords to minimal codewords. We show that the linear codes over rationals and over GF(p), where p is a prime, are triangular representable. In the case of finite fields, we show that this representation determines the weight enumerator of C. We present one application of this result to the partition function of the Potts model. On the other hand, we show that there exist linear codes over any field different from rationals and GF(p), p is a prime, that are not triangular representable. We show that every construction of triangular representation fails on a very weak condition that a linear code and its triangular representation have to have the same dimension.

Host: Misha Chertkov, chertkov@lanl.gov, 665-8119