Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, December 01, 2010
3:00 PM - 4:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

The Statistical Physics of Noisy Computation

David Saad
Department 
of 
Engineering 
and 
Applied 
Science, Aston University 
Birmingham,
 UK

We show how models of random formulae can be mapped onto a physical framework and employ methods of statistical physics, developed specifically to analyze the typical behavior of random disordered systems, to gain insight into the behavior of noisy Boolean random formulae. The stability of the circuit towards input-layer perturbations and its dependence on the input magnetization have been studied to establish the main characteristics of the generated formulae. To investigate the properties of noisy circuits we consider two copies of the same topology with different temperatures representing the noisy and noiseless versions of the same circuit. We show that the typical-case macroscopic behavior observed corresponds straightforwardly to the bounds obtained in the information theory literature for specific cases. Being very general, the framework is extended to consider further properties of random Boolean formulae for different gates, the level of error and function-bias expected at any depth, the sensitivity to input perturbations and expected convergence rate depending on the input bias, gate properties and gate-noise level. This framework enables one to discover typical properties of noisy computation that are inaccessible via traditional methods of information theory and complements the analysis carried out in the theoretical computer science and information theory communities.

Host: IS&T