Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, November 18, 2010
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Postdoc Seminar

A full likelihood-based inference method in the general coalescent tree framework and infinite-sites model

Ori Sargsyan
T-6, LANL, CNLS

In the fist part of this talk I will present a full likelihood-based inference method for population genetic data when the genealogies of DNA sequences fit into the general coalescent tree framework and mutations in DNA sequences are modeled in the infinite-sites model. The general coalescent tree framework is a family of genealogical models, including genealogical models derived for various demographic scenarios. First I will describe an exact sampling scheme for determining the topologies of the conditional ancestral trees. This scheme, however, has some computational limitations and to overcome these limitations a second scheme based on an importance sampling will be provided. These schemes are combined with Monte Carlo integrations to estimate the likelihood of full polymorphism data, the ages of mutations in the sample, and the time of the most recent common ancestor. I will give some applications of this method. In the second part of my talk I will briefly present my current project for developing coalescent based inference methods for genetic data from HIV patients.

Host: Peter Loxley, loxley@lanl.gov