Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 18, 2010
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Shock Induced Jamming and Fracture at Particulate Interfaces

Mahesh Bandi
Harvard University

A monolayer of hydrophobic particles at the air-water interface exhibits properties of a two-dimensional solid under compression. Localized surfactant introduction on such monolayers causes dynamical fracture due to stresses exerted by the advancing surfactant. Here we experimentally demonstrate a radially divergent particulate shock emerges from the point of surfactant introduction. Using similarity solutions that predict $t^{3/4}$ scaling for an advancing surfactant on the surface of a deep fluid, we experimentally show the particulate shock travels with the Thoreau-Reynolds ridge. The shock induces particulate compaction in its wake which increases until the particles jam into a disordered,two-dimensional solid. Fracture occurs when the compaction band\'s packing fraction saturates at random close packed density $\\phi_{RCP}$ and gives rise to nearly regular, triangle shaped cracks with robust geometrical features. The number of cracks $N$ varies monotonically with the initial particulate packing fraction $\\phi_{init}$. Whereas the compaction band\'s radius $R^*$ at fracture onset also exhibits similar monotonic dependence on $\\phi_{init}$, its width $W^*$ shows no such dependence. By treating the compaction band as a rigid, elastic annulus, and invoking mass conservation, we show $N \\sim R^*/W^* = 2\\phi_{RCP}/\\phi_{init}$ and verify it experimentally over a range of initial packing fractions ($0.1 \\le \\phi_{init} \\le 0.64$

Host: Robert Ecke