Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, August 01, 2006
1:00 PM - 1:30 PM
CNLS Conference Room

Seminar

Geometric numerical methods for Climate Modeling

Mathew Dixon
Imperial College

Geometric numerical methods seek to transfer powerful theories in geometric mechanics to computational continuum dynamics. They preserve geometric structure in the flow field leading to excellent conservative properties. This property makes them attractive for climate and weather prediction. For example, one can derive a geometric numerical method for the Lagrangian description of rotating shallow water equations which conserves mass, energy, potential vorticity and enstrophy. Weather and climate prediction practioners prefer Eulerian (i.e. grid based) methods but the Geometric numerical methods which exist are Lagrangian (i.e. particle based). In this talk, I shall discuss my summer project which is to develop a semi-lagrangian method which combines some of the conservative properties exhibited by geometric numerical methods with the convenience of a grid. I will present numerical results of a new locally mass conserving semi-lagrangian approximation for rotating shallow water which is adapted from a geometric numerical method. I will finally discuss ongoing work on developing this approach to conserve other quantities.