Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Friday, May 21, 2010
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Novel Computing Paradigms

Christof Teuscher
Portland State University

Since the beginning of modern computer science some sixty years ago, we are building computers in pretty much the same way. Silicon transistor electronics serves as a physical device, the von Neumann architecture provides a computer design model, while the abstract Turing machine concept supports the theoretical foundations. However, in recent years, unimagined computing devices have seen the light because of advances in synthetic biology, nanotechnology, material science, and neuroscience. Many of these novel devices share the following characteristics: (1) they are made up from massive numbers of simple, stochastic components which (2) are embedded in 2D or 3D space in some disordered way. A grand challenge in consists in developing computing paradigms, design methodologies, formal frameworks, architectures, and tools that allow to reliably compute and efficiently solve problems with such devices. In this talk, I will outline my visionary and long-term research efforts to address the grand challenge of building, organizing, and programming future computing machines. First, I will review exemplary future and emerging computing devices and highlight the particular challenges that arise for performing computations them. I will then delineate potential solutions on how these challenges might be addressed. Self-assembled nano-scale cellular automata (CAs) and random boolean networks (RBNs) will serve as a simple showcase. I will also present the efforts underway to self-assemble massive-scale nanowire-based interconnect fabrics for spatial computers and what the challenges are in terms of computations and communication in such a non-classical system.

Host: Marian Anghel