Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 04, 2010
12:30 PM - 2:00 PM
T-DO Conference Room, TA-03 - Bldg 123 - Room 121

Quantum Lunch

A metastable superconducting qubit

Andrew J. Kerman
Lincoln Laboratory, Massachusetts Institute of Technology

One of the distinguishing features of Josephson-junction (JJ)-based qubits is their strong coupling to electromagnetic (EM) fields, which permits fast gate operations ( 10-100ns). However, it may also be responsible for their short excited-state lifetimes (. 4s); that is, assuming the decay process is electromagnetic, its rate depends on the same matrix element which governs intentional qubit manipulations by external fields. Unfortunately, understanding and controlling spontaneous decay of these circuits has so far proved difficult, because it also depends on their EM environment at GHz frequencies, which is strongly influenced by microscopic degrees of freedom in the substrate, surface oxides, or JJ barrier dielectrics. Although little is yet certain about the properties of these degrees of freedom, work is ongoing to study them, and to reduce their number through improved materials and fabrication. In this presentation, I will discuss a different approach: a qubit which is insensitive to highfrequency EM fluctuations by design. This is a departure from the highly successful computational architecture known as circuit QED, in which strong transverse coupling to EM fields is both a prerequisite and a figure of merit. After describing the details of this new qubit design, which is based on an RF-SQUID and nanowire kinetic inductors, I will then discuss the consequences of weak transverse EM coupling, the first and foremost of which is a (potentially) much longer excited-state lifetime. I will describe how these metastable qubits can be manipulated and coupled to each other, as well as read out and initialized. [1] This work is sponsored by the United States Air Force under Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.

Host: Gennady Berman