Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, October 14, 2009
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Nonlinear Schrödinger solitons under external spatio-temporal forces and a new stability criterion

Franz Mertens
University of Bayreuth

We investigate the dynamics of solitons of the cubic Nonlinear Schrödinger Equation (NLSE) with the following perturbations: non-parametric spatio-temporal driving of the form f(x,t) = a exp[i K(t) x] and damping. This force has an application in nonlinear optical waveguide arrays.

Using a Lagrangian approach, which is generalized by the introduction of a dissipation function, we develop a Collective-Coordinate-Theory which yields ODEs for the collective coordinates position, velocity, amplitude and phase of the soliton. The ODEs are solved analytically and numerically for the following cases: constant, harmonic and biharmonic K(t). In the first case the spatial average of f(x) vanishes, nevertheless the soliton performs on the average a unidirectional motion. Here the amplitude of oscillations around the average motion is much smaller than the period of f(x). In the biharmonic case the soliton performs a ratchet motion.

We conjecture a new stability criterion: if the curve P(V), where P(t) and V(t) are the soliton momentum and velocity, has a branch with negative slope, the soliton is predicted to become unstable which is confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the shorter the branch with negative slope is, the longer the soliton lives.