Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, October 14, 2009
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Nonlinear Schrödinger solitons under external spatio-temporal forces and a new stability criterion

Franz Mertens
University of Bayreuth

We investigate the dynamics of solitons of the cubic Nonlinear Schrödinger Equation (NLSE) with the following perturbations: non-parametric spatio-temporal driving of the form f(x,t) = a exp[i K(t) x] and damping. This force has an application in nonlinear optical waveguide arrays.

Using a Lagrangian approach, which is generalized by the introduction of a dissipation function, we develop a Collective-Coordinate-Theory which yields ODEs for the collective coordinates position, velocity, amplitude and phase of the soliton. The ODEs are solved analytically and numerically for the following cases: constant, harmonic and biharmonic K(t). In the first case the spatial average of f(x) vanishes, nevertheless the soliton performs on the average a unidirectional motion. Here the amplitude of oscillations around the average motion is much smaller than the period of f(x). In the biharmonic case the soliton performs a ratchet motion.

We conjecture a new stability criterion: if the curve P(V), where P(t) and V(t) are the soliton momentum and velocity, has a branch with negative slope, the soliton is predicted to become unstable which is confirmed by our simulations for the perturbed NLSE. Moreover, this curve also yields a good estimate for the soliton lifetime: the shorter the branch with negative slope is, the longer the soliton lives.