Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 24, 2009
1:30 PM - 2:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Scientific Computation using Multiple Graphics Processors

Blair Perot
University of Massachusetts at Amherst

Because many large scientific algorithms can not efficiently use a memory cache, large scale engineering and science calculations have experienced little in hardware performance improvements over the last decade. However, with the advent of programmable graphics processors four years ago, and a C++ graphics programming paradigm (CUDA) roughly a year ago, it is now possible make up for that deficit and obtain an average of ten to twenty times the calculation throughput of the CPU when solving large scientific problems.

The peculiarities of graphics processor (GPU) hardware and how it impacts scientific algorithm structure and performance is discussed. Examples are presented from a range of application domains including: partial differential equation solution, large sequence matching (bio-informatics), and graph traversal and manipulation. The challenges and possibilities of using many GPUs in an MPI-cluster environment are also presented along with the performance of a GPU-based desktop supercomputer with 1920 processing cores in a single PC.

Host: Mikhail Shashkov