Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 24, 2009
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

A Third-Order Discrete Calculus Methods for Diffusion

Blair Perot
University of Massachusetts at Amherst

Discrete calculus methods are a numerical approach to the solution of partial differential equations wherein calculus is discretized exactly. As a result, the discrete divergence, gradient, and curl operators are exact and therefore mimetic. All the numerical error in these methods occurs within the approximation of the material constitutive equations. In this talk, it is shown how the discrete calculus approach can be generalized to construct higher-order methods. The approach is quite general, but for clarity we demonstrate how a third-order discretization of the unsteady diffusion equation would be constructed. Higher-order discrete calculus methods are interesting because they have more unknowns per cell and a mathematical structure similar to a finite element method, but have the conservation properties and general flavor of a finite volume method. The presented method is exact for piecewise quadratic solutions and shows third-order convergence on arbitrary triangular/tetrahedral meshes. The numerical accuracy of the method is confirmed on both two-dimensional and three-dimensional unstructured meshes. The computational cost required for a desired accuracy is analyzed against first-and second- order discrete calculus and finite volume methods.

Host: Mikhail Shashkov