Lab Home | Phone | Search | ||||||||
|
||||||||
Cells reside and operate in a complex and dynamic extra-cellular matrix. The mechanical, structural and chemical properties of the matrix regulate a variety of cellular functions including signaling, adhesion, migration as well as invasion and metastasis in tumor systems. Unfortunately cell-matrix interactions have traditionally been studied in the context of artificial 2D environments, which are far from in vivo conditions. As a result, our understanding of the complex interactions at the cell-matrix interface have been quite limited. In particular, the mechano-chemical effects of the matrix, the proteolytic pathways and surface receptor dynamics on a 3D surface that are critical in invasion and tumor metastasis, and can not be fully studied in a 2D environment. In order to overcome the limited powers of observation in 2D, we utilize a combination of high resolution and high throughput confocal microscopy, bulk and micro-rheological measurements and multi-scale simulations rooted in statistical and continuum mechanics. Our hybrid approach, combining high-resolution experimental and computational techniques demonstrates how a balance of cellular parameters (e.g. integrin expression and MMP activity) co-operate with matrix properties (e.g. composition, stiffness and porosity) to regulate adhesion, invasion and motility of tumor cells in native like environments. Host: Yi Jiang |