Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 14, 2009
4:00 PM - 5:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Inequality and network structure

Willemien Kets
Santa Fe Institute

This paper explores the manner in which the structure of a social network constrains the level of inequality that can be sustained among its members. We assume that any distribution of value across the network must be stable with respect to coalitional deviations, and that players can form a deviating coalition only if they constitute a clique in the network. We show that if the network is bipartite, there is a unique stable payoff distribution that is maximally unequal in that it does not Lorenz dominate any other stable distribution. We obtain a complete ordering of the class of bipartite networks and show that those with larger maximum independent sets can sustain greater levels of inequality. The intuition behind this result is that networks with larger maximum independent sets are more sparse and hence offer fewer opportunities for coalitional deviations. We also demonstrate that standard centrality measures do not consistently predict extremal inequality. We extend our framework by allowing a group of players to deviate if they are all within distance k of each other, and show that the ranking of networks by the extent of extremal inequality is not invariant in k.

Host: Milan Bradonjic, T-5/CNLS