Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Student Program 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Monday, March 09, 2009
10:30 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)


Complexity in Power Grids: Surviving and Mitigating Large Failures in Power Grids

Paul Hines
University of Vermont

About 25% of primary energy is consumed in the production of electricity. After conversion losses, about half of this is delivered to consumers over the global electricity infrastructure. Most predict that this percentage will increase substantially in the foreseeable future, particularly with growing interest in electric-drive vehicles. While power grids are generally robust to small failures, and thus provides a fairly high level of reliability, they are notably vulnerable to large, often spectacular, cascading failures. Single component failures rarely impede the ability of a power grid to serve its customers. But larger sets concurrent outages can produce blackouts with sizes that are highly improbable from the perspective of Gaussian statistics. Because of the number of components in a power grid it is impossible to plan for and mitigate all sets of failures. Maintaining a high level of reliability in the midst of this risk is challenging. As market forces, variable sources (eg. wind and solar power) and new loads (eg. electric cars) increase stress on power grids, the challenge of managing reliability and costs will certainly increase. Therefore we need strategies that enable the most important services that depend on electricity infrastructure to continue in the midst of risks. This talk will focus on two strategies for enabling the most important services that depend on electricity continue in the midst of significant systemic vulnerability. The first, as proposed by Talukdar et al. [1] is survivability, in which backup electricity sources provide a very high level of reliability for services that are economically and socially vital. The second, as proposed by Hines et al. [2], is Reciprocal Altruism, under which agents that manage the infrastructure are encouraged to align personal goals with those of the system as a whole. Results from simulated reciprocally altruistic agents indicate that this approach can substantially reduce the size and costs of large blackouts.

[1] S.N. Talukdar, J. Apt, M. Ilic, L.B. Lave, and M.G. Morgan. Cascading failures: survival versus prevention. The Electricity Journal, 2003.

[2] P. Hines and S. Talukdar. Reciprocally altruistic agents for the mitigation of cascading failures in electrical power networks. In Proc. of the International Conference on Infrastructure Systems, Rotterdam, 2008.

Host: Smart Grid Seminar Series: Coordinated by M. Anghel, M. Chertkov, R. Gupta