Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, March 11, 2009
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Information Theory and Neural Information Processing

J.S. Abercrombie Professor Emeritus Don H. Johnson
Dept of Electrical & Computing Engineering, Rice University

Neuroscientists want to quantify how well neurons, individually and collectively, process information and encode the result in their outputs. But classic information theory only demarcates optimal performance boundaries and does not provide results that would be useful in analyzing an existing system in which little is known (such as the brain). Non-Poisson processes, which are required to describe neural signals, are shown to have individually a capacity strictly smaller than the Poisson ideal. I describe recent capacity results for Poisson neural populations, showing that connections among neurons can increase capacity. Going beyond classic theory, I present an alternative theory more amenable to data analysis and to situations wherein interconnected systems actively extract and represent information. Using this theory, we show that the ability of a neural population to jointly represent information depends nature of its input signal, not on the encoded information.

Host: Ron Pistone, pistone@lanl.gov