Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, December 15, 2008
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Stochastic geometry in nature: fractals and multifractals and how to study them

Ilya Gruzberg
University of Chicago

Complex fractal shapes have been fascinating scientists for a long time. One class of such patterns appears at critical points in equilibrium statistical mechanics (Ising spin clusters or percolation clusters). Another class is represented by clusters dynamically grown far from equilibrium, including diffusion-limited aggregates, dielectric breakdown patterns and the like. These two types of patterns are similar in their complexity, but the level of our understanding of them is dramatically different in the two cases. A recent mathematical breakthrough (recognized in 2006 by a Fields medal) termed the Schramm- (or stochastic) Loewner evolution (SLE), may provide us with a conceptual framework for description of both types of complex patterns in two dimensions. In my talk I will review this recent development and its possible generalizations and applications to such diverse physical problems as turbulence, spin glasses, quantum chaos, deposition growth, and quantum Hall effects.

Host: Razvan Teodorescu, T-CNLS