Lab Home | Phone | Search | ||||||||
|
||||||||
In some physical systems, processes of energy redistribution are driven significantly by fluxes of particles (radiation). Such phenomena take place, for example, in nuclear reactors, stars, laser fusion targets etc. To simulate such physical systems, one needs to formulate and solve multiphysical models that include the transport equation which is a background for mathematical models of neutron transport in nuclear reactors, radiative transfer in plasmas etc. The dimensionality of transport problems is large. In this talk, deterministic methods for solving the multidimensional transport equation on regular and unstructured grids by means of nonlinear projective transport methods are presented. These computational methods are based on formulation of special low-order problems coupled with the original high-order transport equation. The structure of low-order equations are particularly attractive for solving multiphysics problems in which the transport equation is coupled with equations of matter. Host: Mikhail Shashkov, T-5 |