Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, August 12, 2008
3:40 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Student Seminar

Damage Spreading in Spatial and Small-world Random Boolean Networks

Qiming LU
CCS-3 and Rensselaer Polytechnic Institute (RPI)

Random Boolean Networks (RBNs) are often used as generic models for certain dynamics of complex systems, ranging from social networks, neural networks, to gene or protein interaction networks. Traditionally, RBNs are interconnected randomly and without considering any spatial arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, small-world, or other non-random connections. Here we explore the RBN network topology between extreme local connections, random small-world, and random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the relevant component at very low connectivities ($\bar{K} \ll 1$) and that the critical connectivity of stability $K_s$ changes compared to random networks. At higher $\bar{K}$, this scaling remains unchanged. We also show that the relevant component of spatially local networks scales with a power-law as the system size N increases, but with a different exponent for local and small-world networks. The scaling behaviors are obtained by finite-size scaling. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key trade-offs between damage spreading (robustness), the network wiring cost, and the network's communication characteristics.

MENTOR: Christof TEUSCHER, CCS-3