Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Quantum 
 Publications 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, October 29, 2007
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Discrete Minimal Energy Problems

Edward B. Saff
Vanderbilt University

For a closed and bounded surface A in 3-space, such as a sphere or torus, we analyze the behavior (for large N) of N-point equilibrium onfigurations on A for the potential (1/r)^s, where s>0 is a parameter and r denotes Euclidean distance between points. (The case s=1 corresponds to the familiar Coulomb potential, while large s corresponds (in the limit) to best-packing.) If d=dim(A) and s greater than d (the case of long range interactions), the analysis of such points falls under the umbrella of classical potential theory and is a consequence of the continuous theory. But what if s is greater than d or s equals d ? In such cases, the classical theory does not apply and new techniques are needed to analyze the behavior of minimal energy configurations. We shall describe these techniques, which also yield information about "best-packing points" on A. The research has relevance to the study of self-assembling materials and has extensions to higher dimensions. References: 1)D.P. Hardin and E.B. Saff, Discretizing Manifolds via Minimum Energy Points, Notices of the American Mathematics Society,November 2004, pp.1186-1194. 2)D.P. Hardin and E.B. Saff, Minimal Riesz Energy Point Configurations for Rectifiable d-Dimensional Manifolds, Advances in Mathematics, Vol. 193, No. 1 (2005), pp. 174-204. 3)S.V. Borodachov, D.P. Hardin and E.B. Saff Asymptotics for Discrete Weighted Minimal Riesz Energy Problems on Rectifiable Sets, Trans. Amer. Math. Soc. (2008) 4)D. Hardin, E.B. Saff and H. Stahl, The Support of the Logarithmic Equilibrium Measure on Sets of Revolution in R3, J. Math. Physics, Vol. 48, No. 2 (2007), 022901, 14 pp. 5) S. Borodachov, D.P. Hardin, and E.B. Saff, Asymptotics of Best-Packing on Rectifiable Sets, Proc. Amer. Math. Soc., Vol. 135 (2007), pp. 2369-2380 --------------------------------------- Edward B. Saff Professor of Mathematics and Director, Center for Constructive Approximation Phone:(615) 322-2014 Fax:(615) 343-0215 Vanderbilt University Department of Mathematics Nashville, TN 37240 Constr. Approx. (615) 343-4107 Homepage http://www.math.vanderbilt.edu/~esaff/

Host: POC Razvan Teodorescu