Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, September 24, 2007
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Emergent singularities in the dynamics of directed self-assembly of nano-particles

Dr. Darryl D. Holm
LANL and Imperial College, London

Emergent singularities in the dynamics of directed self-assembly of nano-particles Darryl D. Holm Computer and Computational Division, Los Alamos & Mathematics, Imperial College London CNLS Colloquium, Los Alamos National Security LLC, September 24, 2007 The process of Directed Self Assembly (DSA) in nanoscience aims at using macroscopic forces to control the formation of ordered structures of nano-particles. We study how the dynamics of DSA depends on the shapes of the nano-particles. We discuss a kinetic theory approach for deriving a set of macroscopic continuum equations that model the dynamics of DSA for anisotropic nano- particles (whose interactions depend on their relative orientation). DSA itself is characterized at the continuum level as the dynamical emergence of a singular solution for the moments of the probability distribution function starting from smooth initial conditions. The corresponding Smoluchowski approach to the dynamics of DSA for anisotropic nano-particles is also discussed. References [1] J. Gibbons, D. D. Holm, C. Tronci, Singular solutions for geodesic flows of Vlasov moments. To appear on the MSRI Volume “Probability, geometry and integrable systems.” [2] J. Gibbons, D. D. Holm, C. Tronci, Vlasov moments, integrable systems and singular solutions. To appear in Phys. Lett. A (arXiv.org:0705.3603) [3] D. D. Holm, V. Putkaradze, Aggregation of finite-size particles with variable mobility. Phys Rev Lett, 95 (2005) 226-106. [4] D. D. Holm, V. Putkaradze, C. Tronci, Geometric evolution equations for order parameters. Physica D, submitted (arXiv.org:0704.2369) [5] D. D. Holm, V. Putkaradze, C. Tronci, Geometric dissipation in kinetic equations. To appear in C. R. Acad. Sci. Paris, (arXiv.org:0705.0765) [6] D. D. Holm, V. Putkaradze, C. Tronci, Double bracket dissipation in kinetic theories for particles with anisotropic interactions. To appear in Proceedings of the Summer School and Conference on Poisson Geometry, 2005, Trieste, Italy (arXiv.org:0707.4204)