Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, September 11, 2007
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Solver's Working Group

Josh Nolting
Colorado University at Boulder

Josh Nolting Applied Mathematics Colorado University at Boulder Boulder, CO Josh.Nolting@colorado.edu Distance-two interpolation for parallel algebraic multigrid Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large three-dimensional problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained by the Parallel Modified Independent Set coarsening algorithm (PMIS), remedy this complexity growth, but lead to non-scalable AMG convergence factors when traditional distance-one interpolation methods are used. In this paper we study the scalability of AMG methods that combine PMIS coarse grids with long distance interpolation methods. AMG performance and scalability is compared for previously introduced interpolation methods as well as new variants of them for a variety of relevant test problems on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers.