Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, September 12, 2007
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Ergodicity Breaking in the Continuous Time Random Walk

Golan Bel
University of California at Santa Barbara

The continuous-time random walk (CTRW) model exhibits a non-ergodic phase when the average waiting time diverges. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory in this case? Using an analytical approach for the non-biased and the uniformly biased CTRWs, and numerical simulations for the CTRW in a potential field, we obtain the nonergodic properties of the random walk which show strong deviations from Boltzmann-Gibbs theory [1,2]. We derive the distribution function of occupation times in a bounded region of space which, in the ergodic phase recovers the Boltzmann-Gibbs theory, while in the non-ergodic phase yields a generalized non-ergodic statistical law. In particular we show that in the non-ergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. When conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the non-ergodic dynamics and canonical statistical mechanics. The relation of our work to single-molecule experiments is briefly discussed. [1] G. Bel and E. Barkai, Phys. Rev. Lett., 94, 240602 (2005). [2] G. Bel and E. Barkai, Phys. Rev. E, 73, 016125 (2006).