Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 27, 2007
4:00 PM - 4:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Seminar - Mesh Adaptation and Discrete Maximum Principle for 2D

Xianping Li
University of Kansas

Abstract: We consider a 2D diffusion problem in a domain with Dirichlet boundary conditions. The Maximum Principle asserts that the solution cannot have a maximum or a minimum within the interior of the underlying domain. So the continuous solution are between the values defined on the boundaries. The Discrete Maximum Principle (DMP) is the discrete form of the Maximum Principle. If the numerical solution violates DMP,i.e., some solutions are beyond the range defined by the boundary values, it will give wrong predictions due to the non-physical solutions or fluxes. Using Finite Element method, we discretize the domain into triangles. Then the problem becomes to solve a linear system Ax = b, with A, which is called the stiffness matrix, be symmetric and positive definite. If in addition, all off-diagonal entries of A are non-positive and each row sum of A is non-negative, then A is an M-matrix. If A is an M-matrix with diagonal dominance, then the numerical solution is guaranteed to satisfy DMP. It has been proven that for isotropic diffusion problems, if all the angles in triangulation of the mesh are not greater than \pi/2, then the stiffness matrix A is an M-matrix with diagonal dominance and the solution satisfies DMP. However, for anisotropic diffusion problems, the stiffness matrix obtained using general mesh will have some positive off-diagonal entries. Thus A is not an M-matrix, and the solution may violate DMP. In this study, we try to adapt mesh for 2D anisotropic diffusion problems so that the solution satisfies DMP. We first deduce sufficient conditions for a mesh such that it guarantees the corresponding stiffness matrix to be an M-matrix. Then we construct some meshes of this type for computation. Finally, we study the effect of different meshes on the numerical solution, and modify the meshes locally to improve the numerical solution. The goal is to develop mesh adaptation strategy such that the solution satisfies DMP with as little mesh modification as possible.

Host: Mentor: Daniil Svyatskiy