Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Tuesday, May 30, 2006
09:00 AM - 10:00 AM
CNLS Conference Room

Seminar

Laboratory study of turbulent gravity currents on a continental slope

Sabine Decamp
LEGI / Coriolis

This study characterizes the dynamics of a turbulent gravity current flowing down a uniform slope in a rotating media. These dense overflows are of particular interest in oceanography since it is an important mechanism in renewing deep water as part of the global thermohaline convective cycle. The large Coriolis turntable (LEGI) is used to study at the laboratory scale, a gravity current in similarity with the oceanic scales. The propagation of such currents is strongly influenced by rotation, bottom topography and mixing with the ambient fluid, that induce unstable dynamics. Interactions between the gravity current and the ambient fluid, due to entrainment and detrainment phenomena, control the stabilization depth of the main current along the coast, as well as its velocity and density. Scaling laws are derived, describing the main properties of the flow along the slope, where the buoyancy flux is conserved. This highly turbulent regime leads to a self-similar behaviour of the main flow. Laboratory experiments are used to determine the rate of mixing arising both from small-scale turbulence with entrainment of the ambient fluid and detrainment phenomena, and geostrophic turbulence with generation of large scale instabilities. The intensity of horizontal turbulent stress is closely related to the formation and displacement of large cyclonic vortices also visible in oceanic flows.

Host: Bob Ecke, T-CNLS