Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 Anastasio Fellow 
 Fellow Program 
 
 Student Requests      
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Ademola Soyemi

CNLS Postdoctoral Research Associate
T-1

ML Interatomic Potentials for High Energy Materials

Office: TA-3, Bldg 1690, Room 117
Mail Stop: B258
Email: ademola@lanl.gov

Research highlight

    I am broadly interested in computational chemistry and the applications of ML Interatomic potentials (MLIPs) to understanding atomic scale phenomena. My current work is focused on developing MLIP-based models and novel workflows to drive reactive modeling of high energy materials under extreme conditions at ab initio-level accuracy.

Talks at CNLS:
 Educational Background/Employment:
  • Covenant University, Nigeria: B.Eng. Chemical Engineering (2018)
  • University of Alabama: Ph.D. Chemical Engineering (2025)

Research Interests:

  • MLIP-based reactive chemistry modeling
  • Method development for MLIPs
  • Computational materials design
  • Computational catalysis
Google Scholar

Selected Recent Publications:

  1. Soyemi, A.; Baral, K.; Szilvási, T.. Modeling Equilibrium Solid-Liquid Interfaces under Effective Constant Chemical Potential Using Machine Learning Interatomic Potentials (2025) https://doi.org/10.1021/acs.jpca.5c06453
  2. Maxson, T.; Soyemi, A.; Zhang, X.; Chen, B.W.J.; Szilvási, T.. MS25: Materials science-focused benchmark data set for machine learning interatomic potentials (2025) https://doi.org/10.1021/acs.jcim.5c01262
  3. Soyemi, A.; Szilvási, T. . Modeling the Behavior of Complex Aqueous Electrolytes Using Machine Learning Interatomic Potentials: The Case of Sodium Sulfate (2025) https://doi.org/10.1021/acs.jpcb.5c02306
LANL Operated by the Triad National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy