Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Rohit Kannan

Postdoctoral Research Associate
T-5/CNLS

Stochastic and Global Optimization

Rohit Kannan

Office: TA-3, Bldg 1690, Room 000
Mail Stop: B258
Phone: (505) 000-0000
Fax: (505) 665-2659

rohit.kannan@lanl.gov
home page

Research highlight
    I am broadly interested in data-driven decision-making under uncertainty with application to energy and chemical process systems. My research interests include integrated machine learning and optimization under uncertainty, deterministic global optimization, and scalable solution methods for stochastic optimization.
 Educational Background/Employment:
  • Ph.D. (2018) Chemical Engineering, MIT
  • M.S. (2014) Chemical Engineering Practice, MIT
  • B.Tech. (2012) Chemical Engineering, IIT Madras
  • Employment:
    • 2018-2020 Postdoctoral Research Associate, Wisconsin Institute for Discovery, UW-Madison

Research Interests:

  • Optimization under uncertainty
  • Integrated learning and optimization
  • Deterministic global optimization
  • Applications in energy and chemical process systems

Selected Recent Publications:

  1. R. Kannan, G. Bayraksan, and J. R. Luedtke, Residuals-based distributionally robust optimization with covariate information, Under Review (2020).
  2. R. Kannan, G. Bayraksan, and J. R. Luedtke, Data-driven sample average approximation with covariate information, Under Review (2020).
  3. R. Kannan and J. R. Luedtke, A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs, Forthcoming in Mathematical Programming Computation (2020).
  4. R. Kannan, J. R. Luedtke, and L. A. Roald, Stochastic DC optimal power flow with reserve saturation, XXI Power Systems Computation Conference (2020).
  5. R. Kannan and P. I. Barton, Convergence-order analysis of branch-and-bound algorithms for constrained problems, Journal of Global Optimization (2018).
LANL Operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
Copyright © 2003 LANS, LLC | Disclaimer/Privacy