Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Summer Research 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
James Brunner

Bioenergy & Biome Sciences/CNLS


James Brunner

Office: TA-3, Bldg 1690, Room 130
Mail Stop: B258
Phone: (248)767-9571
Fax: (505) 665-2659
home page

Research highlight
     Educational Background/Employment:
    • B.S. (2012) Mathematical Sciences, University of Michigan
    • M.A. (2014) Mathematics, University of Wisconsin - Madison
    • Ph.D. (2018) Mathematics, University of Wisconsin - Madison
    • Employment:
      • 2018-2021 Research Fellow, Mayo Clinic, Rochester, MN

    Research Interests:

    • Mathematical models of the microbiome
    • Systems biology
    • Dynamics on networks
    • Micrbial ecology
    • Genome scale metabolic modeling

    Selected Recent Publications:

    1. James D. Brunner and Nicholas Chia. Minimizing the number of optimizations for efficient community dynamic flux balance analysis. PLOS Computational Biology, 16(9):1-20, 09 2020. doi: 10.1371/journal. pcbi.1007786.
    2. James D. Brunner and Nicholas Chia. Confidence in the dynamic spread of epidemics under biased sampling conditions. PeerJ, 8, 2020. doi: 10.7717/peerj.9758
    3. David F. Anderson, James D. Brunner, Gheorghe Craciun, and Matthew D. Johnston. On classes of reaction networks and their associated polynomial dynamical systems. Journal of Mathematical Chemistry, 58(9):1895-1925, 2020. doi: 10.1007/s10910-020-01148-9
    4. James D. Brunner and Nicholas Chia. Metabolite-mediated modelling of microbial community dynamics captures emergent behaviour more effectively than species-species modelling. Journal of the Royal Society Interface, 16(159):2019 0423, 2019. doi: 10.1098/rsif.2019.0423.
    5. James D. Brunner and Gheorghe Craciun. Robust persistence and permanence of polynomial and power law dynamical systems. SIAM Journal on Applied Mathematics, 78:801-825, 2018. doi: 10.1137/17M1133762.
    LANL Operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the US Department of Energy.
    Copyright © 2003 LANS, LLC | Disclaimer/Privacy