Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 CNLS Staff Members 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 Anastasio Fellow 
 
 Student Requests      
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 T-Division 
 LANL 
 
Thursday, September 25, 2025
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Evaluating Probability Consistency in Large Language Models

Bradley Love
CAI-3

Large language models should theoretically produce identical perplexities regardless of token ordering (forward, backward, or permuted), yet empirical evidence reveals systematic deviations. We formally prove perplexity invariance under any factorization and demonstrate that models trained on different token orders exhibit consistent violations of this theoretical expectation. These inconsistencies, traceable to positional biases in self-attention mechanisms, suggest fundamental gaps between theoretical foundations and practical implementations. Our findings suggest that probability consistency violations could serve as diagnostic metrics for identifying unreliable model behaviors, offering a principled approach to evaluating model trustworthiness in scientific applications. I'll end by considering how LLMs trained on forward and backward temporal orders can be used to reason about physical systems using test-time compute.

Host: Harsha Nagarajan, Michael McCann, William Taitano, and Svetlana Tokareva