Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, February 14, 2019
12:30 PM - 1:30 PM
T-DO Conference Room (03-123-121)

Quantum Lunch

Time Evolution of an Infinite Projected Entangled Pair State

Jacek Dziarmaga
Jagiellonian University

An infinite projected entangled pair state (iPEPS) is a tensor network ansatz to represent a quantum state on an infinite 2D lattice whose accuracy is controlled by its bond dimension D. Its real, Lindbladian or imaginary time evolution can be split into small time steps. Every time step generates a new iPEPS with an enlarged bond dimension D' which is approximated by an iPEPS with the original D. I will present an efficient optimization scheme employing a local estimator of fidelity, see arxiv 1811.05497. The algorithm was tested simulating Lindbladian evolution and unitary evolution after a sudden quench of the transverse field in the 2D quantum Ising model. Furthermore, thermal states of this model were simulated by imaginary time evolution and the critical temperature was estimated with good accuracy. I will also report work in progress on thermal states in the Kitaev-Heisenberg model and Lindbladian master equation for Rydberg atoms.

Host: Lukasz Cincio