Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Executive Committee 
 Postdocs 
 Visitors 
 Students 
 Research 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 P/T Colloquia 
 Archive 
 Ulam Scholar 
 
 Postdoc Nominations 
 Student Requests 
 Student Program 
 Visitor Requests 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Friday, March 20, 2015
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Incremental Principal Principal Component Pursuit for Video Background Modeling: theory, applications and jitter invariant extension

Paul Rodriguez-Valderrama
Pontificia Universidad Catolica Del Peru

While Principal Component Pursuit (PCP), a.k.a. Robust Principal Component Analysis (RPCA), is currently considered to be the state of the art method for video background modeling, it suffers from a number of limitations, including a high computational cost, a batch operating mode, and sensitivity to camera jitter.

The original PCP problem considers the nuclear and l1 norms as penalties for the background (low-rank) and foreground or moving objects (sparse) with an equality constrain for the observed videos and low-rank and sparse components.

In this talk we propose to change constraints to penalties, obtaining a variant where the restoration error (observed video minus low-rank and sparse component) and l1 norm are penalties while imposing the rank of the low-rank component as a constraint. Interestingly, this particular variant can be effectively solved in an incremental fashion, allowing real-time implementation for live-feed HD videos; moreover, considering T(.), an unknown rigid transformation, applied to the low-rank component, we can also cope with translational and rotational jitter, allowing almost real-time processing.

Furthermore, in this talk we will also include a detailed analysis of the proposed PCP variant as well as incremental SVD, which is the key to solve the equivalent problem incrementally.

Host: Brendt Wholberg