Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Colloquia Archive 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 CNLS Fellowship Application 
 Summer Research 
 Past Visitors 
 History of CNLS 
 Maps, Directions 
 CNLS Office 
Thursday, June 20, 2013
12:30 PM - 1:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Quantum Lunch

Decoherence and the Quantum Detection of Classically Undetectable Phenomena

Jess Reidel
IBM Watson

I consider the general problem of exploiting quantum mechanics to detect weak particles and forces. A phenomenon is detectable using classical methods if and only if the effective Hamiltonian coupling it to normal matter does not commute with the classically preferred basis. Classically undetectable phenomena can still be observed, but they require coherent superpositions and measurements which do not commute with the preferred basis. The shot noise limit, the standard quantum limit, and (surprisingly) the Aharonov-Bohm effect are special unitary cases of such generalized Quantum Enhanced Measurements (QEMs). I extend this framework to the non-unitary case of weak phenomena producing entangling decoherence. In particular, I propose directly detecting dark matter through the decoherence it causes rather than its classical effects such as recoil or ionization, and I show that matter interferometers are sensitive to sub-MeV dark matter which transfers negligible momentum and hence is inaccessible to classical techniques. The coherent control of Planck-mass superpositions could even enable the detection of gravitons. Finally, I draw a distinction between QEMs like the shot noise limit which are based on a preferred basis of unentangled particles, and so-called quantum enabled measurements which are based on a preferred basis of wavepackets.

Host: Adolfo del Campo